Aliquot Sequence Research  2.0
Compute properties of the sum-of-proper-divisors function.
File List
Here is a list of all documented files with brief descriptions:
[detail level 123]
  factor
 factor.h
 primes.h
  pollpom_kparent
 pollpom_kparent.cThis program implements an generaliztion of Conj. 1.4 of Pollack/Pomerance "Some problems of Erdos on the Sum of Divisors Function" Instead of estimating the natural density of only aliqout orphans this program also estimates the density of k-parent aliquot numbers n is a k-parent aliqout number iff there are k distinct natural numbers m st s(m) = n An aliquot orphan is a 0-parent aliquot number let delta-k be the estimated density of k-parent aliquot numbers and s(n) be the sum-of-proper-divisors function delta-k = 1/log(bound) * sum(forall a <= bound)( (a^(k-1) * e^(-a/s(a)) / k! * s(a)^k) )
 pollpom_kparent.h
 pollpom_kparent_cli.c
  pomyang_kparent
  inc
 bruteforce_kparent.hApi to brute force number of preimages
 math_macros.h
 moewsmoews_sieve.hApi to the Moews and Moews sieving algorithm
 PackedArray.h
 pomyang_kparent.hApi for pom_yang algorithm operations
  src
 bruteforce_kparent.cUses a simple bruteforce method to compute number of preimages for even number upto bound. Useful as a backstop test to the pom_yang algorithm
 geomean_sn.cRuns geomean calculation from [Chum et al.] Sect 2
 moewsmoews_sieve.cFunctions to sieve blocks of sigma function
 pomyang_cli_main.cCommand line interface to interact with the pom_yang algorithm
 pomyang_kparent.cCounts the even numbers with k-preimages under the sum-of-proper-divisors function