|
Aliquot Sequence Research
2.0
Compute properties of the sum-of-proper-divisors function.
|
This program implements an generaliztion of Conj. 1.4 of Pollack/Pomerance "Some problems of Erdos on the Sum of Divisors Function" Instead of estimating the natural density of only aliqout orphans this program also estimates the density of k-parent aliquot numbers n is a k-parent aliqout number iff there are k distinct natural numbers m st s(m) = n An aliquot orphan is a 0-parent aliquot number let delta-k be the estimated density of k-parent aliquot numbers and s(n) be the sum-of-proper-divisors function delta-k = 1/log(bound) * sum(forall a <= bound)( (a^(k-1) * e^(-a/s(a)) / k! * s(a)^k) ) More...
#include "../pollpom_kparent/pollpom_kparent.h"#include <alloca.h>#include <assert.h>#include <math.h>#include <omp.h>#include <stdio.h>#include <stdlib.h>#include <string.h>#include <time.h>#include <unistd.h>#include "../factor/factor.h"#include "../pomyang_kparent/inc/math_macros.h"
Functions | |
| void | pollpom_kparent (pollpom_config_t *cfg) |
This program implements an generaliztion of Conj. 1.4 of Pollack/Pomerance "Some problems of Erdos on the Sum of Divisors Function" Instead of estimating the natural density of only aliqout orphans this program also estimates the density of k-parent aliquot numbers n is a k-parent aliqout number iff there are k distinct natural numbers m st s(m) = n An aliquot orphan is a 0-parent aliquot number let delta-k be the estimated density of k-parent aliquot numbers and s(n) be the sum-of-proper-divisors function delta-k = 1/log(bound) * sum(forall a <= bound)( (a^(k-1) * e^(-a/s(a)) / k! * s(a)^k) )
| void pollpom_kparent | ( | pollpom_config_t * | cfg | ) |
| cfg |
1.8.17